If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(X-1/2)^3-X(X+1/4)^2+23/16=0
We add all the numbers together, and all the variables
(+X-1/2)^3-X(+X+1/4)^2+23/16=0
We calculate fractions
((X-4)^2*16)/()+(-X(X+2)^3*16)/()+()/()=0
We calculate terms in parentheses: +((X-4)^2*16)/(), so:
(X-4)^2*16)/(
We multiply all the terms by the denominator
(X-4)^2*16)
We get rid of parentheses
X-4)^2*16
We add all the numbers together, and all the variables
X
Back to the equation:
+(X)
We calculate terms in parentheses: +(-X(X+2)^3*16)/(), so:We add all the numbers together, and all the variables
-X(X+2)^3*16)/(
We multiply all the terms by the denominator
-X(X+2)^3*16)
We multiply parentheses
-X^2-32X^2
We add all the numbers together, and all the variables
-33X^2
Back to the equation:
+(-33X^2)
(-33X^2)+X+1=0
We get rid of parentheses
-33X^2+X+1=0
a = -33; b = 1; c = +1;
Δ = b2-4ac
Δ = 12-4·(-33)·1
Δ = 133
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1)-\sqrt{133}}{2*-33}=\frac{-1-\sqrt{133}}{-66} $$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1)+\sqrt{133}}{2*-33}=\frac{-1+\sqrt{133}}{-66} $
| x =2x-3 | | 5(s+9)^2-44(s+9)=9 | | 4/x=0.01625 | | (2/x)-5=4x+2 | | 2/9-1/15y+6/5=8y-56/9 | | x=5+(2)/(2-x) | | x/12+3=4 | | 2x2+8/3x=0 | | 6a*a+a-2=0 | | 15+13x/4+19=60 | | 7x+4(x-50)+x=112 | | (W+5)+(w-7)=12 | | 22=6r-82 | | x/5+65=74 | | (W+7)+(w-7)=12 | | 16=4m-18 | | -7/2(x)^2-28(x)-35=0 | | (6x-3)(4+5x)=0 | | -7/6(x)^2-28(x)-35=0 | | 41=14+9u | | 16^2-34x+15=0 | | (2x+7)2=0 | | |3x+7|=7 | | 25x2-2/5x=0 | | 4x=-2x+3- | | 4x/3+5=x/2 | | 15x+22(x-2)=252 | | m/3+1/3=4/5 | | 5(x+6)-10=30 | | 32x/6=7 | | 3/4h=-6 | | 9/2k+45/4+3=30 |